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GENERATION OF INTERNAL WAVES BY BOTTOM ROUGHNESS OF THE INTERFACE 

OF TWO FLUIDS FLOWING AT ANGLES TO EACH OTHER 

I. V. Sturova UDC 551o466.4 

The simplest example of three-dimensional internal waves in a stream whose velocity 
varies with depth in both magnitude and direction is waves on the interfaeial surface of 
two fluids of different densities flowing at an angle to one another. Investigation of the 
kinematic characteristics of the wave motion in such a fluid under the condition that the 
depth of the lower layer is infinite was performed in [i]. The asymptotic behavior of waves 
on the interfacial surface that occur during the flow around a body for the case of in- 
finitely deep layers and of an obstacle on the bottom under the condition of infinite thick- 
ness of the upper layer was examined in [2]. The stability of waves occurring on the inter- 
facial surface of two infinite streams flowing at an angle to each other was investigated 
in [3]. 

Let us consider the flow around an elevation described by the function f(x, z), by a 
stream infinite in the horizontal directions, in whose upper layer of thickness Hi the 
fluid density is 01, while it is 02 = p~(l + ~)(e~0) in the lower layer of thickness 
H=. The velocity of the lower stream is Ua and is along the x axis, while the velocity of 
the upper stream is U~ and makes an angle a with the x axis. The x and z axes are on the 
unperturbed interfacial surface, the y axis is vertically upward, and the axis of symmetry 
of the obstacle passes through the origin. 

Assuming the fluid motion within each layer to he irrotational, and the perturbations 
on the free surface and the interfacial surface to be small, we write the equations for the 
velocity potentials of the perturbed motion in each layer in the form 

A~I=0 for O<~y~HI, Ag~=0 ~ r  --l[~g < 0 (i) 

with boundary conditions on the free surface (y = HI) 

O~/Oy-FL~ = O, L ~  = g~; (2)  

on the interfacial surface (y = O) 

O ~ i / O y q - L ~  = O, O~JOy ' -~ -L~  = O, p ~ L 2 % - - p i L i g i  = g (P~- -PO~;  (3)  
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on the bottom (y = --H~) 

where 

Ocp~/Oy + L~f =O,  r % - + 0  a~ x ~ + z ~-+oo, 

Here the functions ~(x, 
face and the interfacial surface, respectively, and g is the acceleration of gravity. 
Often the simpler condition of a "solid cover," for which acpl/ay = 0 at y = H~, is used in 
place of (2) in investigations of internal waves on the free surface. 

Let us introduce the dimensionless variables by taking the quantities h = f(0, 0) 
(height of the elevation) and U2 as the scalar units of the length and velocity, and by 
using the Fourier transform 

~ .  (~, V, ~') = ~ . e - ~ d x  e -~ '~  (z, y, z) dz 
- -  o r  - -  c c J  

f o r  r e a l  ~ and v ,  we o b t a i n  a s y s t e m  o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  from ( 1 ) ,  whose 
solution will yield the following representations for the functions ~,(~, ~) and n*(~, ~), 
the Fourier transforms of the functions ~ and n: 

4k ~dld~/, '~ ~ (t +e)e->(lq+ns) 

~1, ::: (~ + ~-2~'"~) D 

where 

L1 ------ U~(cos a.  O/Ox + sin ~. O/8z), L~ - -  UsO/Ox. 

z) and ~(x ,  z) d e s c r i b e  t he  v e r t i c a l  d i s p l a c e m e n t s  o f  the  f r e e  s u r -  

D = AD1 -- kd~D2; 

D, (k, 0) = [cA th k H  s - -  (1 + 8) kd~] th k H  1 - -  kd~ th kH,;  

O 3 (k, 8) = (sA - -  kd~ th k i l l )  th kH  2 - -  (I + 8) kd~; 

d l = - V s i n ( 8 + c r  ds ---- sin 8; A----gh/U~; V = U I I U ~ ;  

f ,  i s  t he  F o u r i e r  t r a n s f o r m  of  the  f u n c t i o n  f ( x ,  z) and the  s u b s t i t u t i o n  

= k s i n 0 ,  v-----keosO 

is performed. The function n* becomes 

2kd~[. (| + ~) e -M-12 th kit 1 

= - (1 + o-shil l)  91 

when t he  c o n d i t i o n  o f  a " s o l i d  c o v e r "  i s  used  on the  f r e e  s u r f a c e .  

E x e c u t i n g  t he  i n v e r s e  F o u r i e r  t r a n s f o r m ,  we o b t a i n  

t t ~1 (x, z) = ~ e~xd~ eiVzrl,dv = ~ Re dO ke:hr'ln(~ (4) 

where  the  s u b s t i t u t i o n  x = r cos % z = r s i n  .~ has  been  p e r f o r m e d .  An a n a l o g o u s  e x p r e s s i o n  
w i l l  a l s o  h o l d  f o r  the  f u n c t i o n  ; ( x ,  z ) .  

The functions ~, and ~* have simpie poles that are the roots of the equation D(k, 0) = 
0 or Dx(k, 0) = 0. It can be seen that for 

8~/fl, 
A [vshr s sin ~ (0 + ~) + H 1 sin s 0] - -  V 4 sin ~" 0 sin" (0 + ~) < t + e 

t h e  e q u a t i o n  D(k, O) = 0 has  two p o s i t i v e  r o o t s  k : , ,  ( k l<  k a ) ,  o t h e r w i s e  j u s t  one r o o t  ka 
e x i s t s ,  The e q u a t i o n  Dx (k, 0) = 0 has  n o t  more than  one p o s i t i v e  r o o t  kz and o n l y  under  
the condition 

V~H2 sin 2 (0 + a) + (t + g)H~ sin 2 0 < eAItlH~ 
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We use the Rayleigh method of introducing small dissipative forces [i] proportional to the 
fluid particle velocities to select the contour of integration in the k-plane in (4). 
Hence, only the dynamical conditions on the free surface in (2) and on the interfacial sur- 
face in (3) undergo changes in the initial problem (1)-(3), and they will now have the form 

LlrPl  -}- f iqh = g ~ ,  p ~ L ~ %  - -  p l L l q h  -}- [5(p=~ - -  plq~,) = g(P2 - -  P , ) r l ,  

where B > 0 is the dissipation factor which is small in magnitude. The solution of (i) with 
these boundary conditions shows that the poles of the integrand in (4) have the form k = 
+ iBy as B+0, where for the condition of a "solid cover," e.g,, 

2k I [ I; sin (0 q- oc) cth kl/-fl Jl- ('I + g) sin 0 cth'kiH = ] 
8A -- ~ [(I + ~) z~= si~ 2 01sh = ~ 2  + VsH, sin~ (e + =)Ish~ ~S,]" 
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Therefore, the contour of integration in (4) is selected in the first or fourth quadrant, 
depending on the sign of sin(0~ ~), where all the real poles are bypassed by small semicircles 
on which Im k < 0 for y > 0 and Im k > 0 for y < 0. This circumstance was not taken into 
account in [2] and all the poles were bypassed from below. 

Consequently, the integral representations for the desired functions can be written 
as the sums of single integrals because of the presence of poles and of double integrals 
occuring because of integration along the imaginary axis, which will later be excluded from 
consideration since they describe local effects in the neighborhood of the elevation and 
decrease rapidly with the growth of r. 

The final expression for the function N(r, ~) has the form (analogously for the func- 
tion ~(r, ~)) 

b3 

' Z 1 + r)lRo n,(  ,oleo, 

where kj is the root of the equation D(k, 0) = 0 or D1(k, 0) = 0, and the integration is 
over those ranges of values 0 in which sgn(sin (0 q-~)) ---- sgn (~). 

In executing the specific computations the shape of the axisymmetric elevation on the 
bottom was given in two forms 

I(I") = t - -  r~/d ~ for O ~ r <~ d, ](r) = 0  for d < : r  < o o ,  

-], (k) = 4 z J  2 ( kd ) / k  ~, 

where J= is the Bessel function of second order of the first kind, 

](r) = d3/(d ~ q-  2rz)a/2 for O ~ r < : c o ,  

f ,  (k) = n d  z exp (-- dk/2)12,  

for which the volumes of both elevations agree and equal S = ~da/2. The case of the flow 
around a dipole located on the bottom at the point x = Oj z = 0 with axis along the x axis 

(5) 

(6) 
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and momentum equal to S is also investigated for comparison. In this case f, = S. As is 
known (cf. [4]), such an approximation is used in investigating internal waves generated by 

a moving body. 

Numerical computations of the function n(x, z) were performed for two values of V and 
for A = i00, c = i0 -~, H1/h = 2, H2/h = 5. Isolines of the functions q(x, z)/h are repre- 

sented in Figs. 1-4 for V = i, ~ = 0.45 ~ (Figs. 1 and 2) and V = 0.5, ~ = 0.45 ~ (Figs. 3 
and 4) for an obstacle described by the function (5) for d = 5. The boundaries of the wave 
zones determined by the method of stationary phase analogously to [2] are shown by dashes. 
The circle with center at the origin corresponds to the boundary of the elevation. For = = 
0 the flow map is symmetric relative to the x axis. The isolines in Figs. i and 2 are from 
the following levels: 0, • -2 , • -2 , • -I , • -I , and in Figs. 3 and 4 from 0, 
• -3 , • -3 , • -3 , • -~, • -2 . 

It should be noted that for given values of the initial parameters, the difference 
between the solutions obtained by using complete conditions on the free boundary and the 
"solid cover" condition does not exceed 1%. The vertical displacements on the free surface 
are several orders of magnitude less than on the interfacial surface. 

An investigation of the influence of the obstacle shape on the internal wave amplitude 

showed that the dipole approximation yields exaggerated values. The function ~(x, z)/h is 
represented in Fig. 5 as a function of x for z/h = 20 and the above-mentioned values of 
A, e, HI, H2 for V = I (a -- ~ = 0, b -- ~ = 45~ Curves 1-3 correspond to elevations given 
by (5), (6) and the dipole approximation. For V = 0.5 and different ~, the wave amplitudes 
for both kinds of elevations become quite similar; however, their divergence from the dipole 
approximation is still more substantial than for V = i. 

The stability of waves occurring on the interfacial surface of two infinite streams 
directed at an angle to each other was investigated in [3]. The results of this paper are 
easily extended to the case of streams of finite depth upon compliance with the "solid 
cover" condition on the free surface. Waves with the wave number k will be stable if 
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k As 
(t + 8) th k t I  1 @ th k l t  2 <~ (l + 8) IV sin (8 + ~) - -  sin 0] 2. 

The wave motion obtained for the stationary problem examined above will always be stable. 

l. 

2. 

3. 

4. 

LITERATURE CITED 

L. N. Sretenskii, Theory of Wave Motions of Fluids [in Russian], Nauka, Moscow 
(1977). 
I. N. Kochina, "On waves on the interfacial surface of two fluids flowing at an angle 
to each other," Prikl. Mat. Mekh., 19, No. 5 (1955). 
L. S. Gandin, "On wave stability at the interfacial surface of streams directed at an 
angle to each other," Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 3 (1957). 
J. W. Miles, "Internal waves generated by a horizontally moving source," Geophys. 
Fluid Dynam., ~, i (1971). 

APPARENT INTERNAL WAVES IN A FLUID WITH EXPONENTIAL DENSITY 

DISTRIBUTION 

S. A. Makarov and Yu. D. Chashechkin UDC 532.593 

On the basis of a modified stationary phase method proposed in [i, 2], the constant 
phase surfaces of internal waves excited by a body moving at an arbitrary angle to the hori- 
zon, which agree satisfactorily with those observed experimentally, are determined in [3] in 
the plane and three-dimensional cases. Taking account of the integral transforms [4, 5], 
the plane and spatial problems of wave motions occurring during the flow around submerged 
sources and sinks of identical intensity by a uniform fluid stream stratified with respect 
to the density are considered by numerical methods in a linear formulation in [6]. The 
asymptotic solution for the wave field excited by a dipole and an arbitrary source-sink 
system moving in an exponentially stratified fluid is obtained in [7, 8]. These solutions 
describe the wave pattern occurring during motion of a body at high velocities. 

The purpose of this paper is the determination of the amplitude phase characteristics 
of apparent internal waves in a fluid with an exponential density distribution for uniform 
horizontal body displacement in a broad range of motion regimes (including motion at low 
velocities) and their subsequent comparison with the results of laboratory experiments. 
Dissipative and diffusion effects (i.e., the change in particle density during motion is not 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, 
pp. 47-54, November-December, 1981. Original article submitted October 13, 1980. 

772 0021-8944/81/2206-0772507.50 �9 1982 Plenum Publishing Corporation 


